DIATE LOS	Roll No.
TAMALUTAN AND THE STATE OF THE	Sig. of Candidate.

Answer Sheet No

Sig. of invigilator.____

PHYSICS HSSC-I SECTION - A (Marks 17)

				<u> </u>	CIIOIL- A	Mair					
Time			Minutes				Version				
Note:	provid Centre use le	ed sep Super ad pend	arately. It sho intendent along il.	uid be g with t	completed in the Question Pa	the fin	rst 25 minutes eleting/overwriti	and h	OMR Answer Sheet anded over to the not allowed. Do not		
Q. 1	Choose the correct answer A / B / C / D by filling the relevant bubble for each question on the OMR Answer Sheet according to the instructions given there.										
	1)		g man run <mark>s up</mark> a output in Watts.		ght of stairs in 4 s	ec. The	e vertical height of	s tairs	is 4.5m . Calculate his		
		A .	$6.7 \times 10^2 W$	B.	$7.7 \times 10^{-2} W$	C.	$7.5 \times 10^{-1} W$	D.	7.7×10^2W		
	2)	The tra	avel time of light 8 mln 20 sec	from mo	oon to earth is: 1 min 20 sec	C.	1 min	D.	8 min		
	3)	The cr A. C.	oss product of to Negative of a v Unit vector		llel vectors is:	В. D.	Null Vector AB				
	4)				each other when:		II II .	_			
		Α.	$ A.B = A \times B $	В.	A+B =0	C.	$ \overrightarrow{A} \times \overrightarrow{B} = 0$	D.	$\left \overrightarrow{A}.\overrightarrow{B} \right = 0$		
	5)	Distan A.	ce between an o Less than 2f	bject ar B.	nd its real image Greater than 2		by convex lens ca Greater than f		e: Equal to 4f		
	6)	For wh A.	nich energy sour Wind	ce, the o B.	original source is Waves	the mo	on: Tides	D.	Geothermal		
	7)	One ra	adian is equal to: 90°	В.	29°	C.	5 7 °	D.	45°		
	8)	The m	oment of inertia	of a thir	rod of length 'r'	is:					
		A .	$\frac{1}{2}mr^2$	B.	mr²	C.	$\frac{2}{5}mr^2$	D.	$\frac{1}{12}mr^2$		
	9)	For an A.	gles greater that Scattered	n critical B.	l angle, all the lig Reflected	ht is: C.	Refracted	D.	Polarized		
	10)	If λ fo	r air is 1.4 and a	it STP c	ondition $\sqrt{\frac{p}{\rho}} = 1$	280 m/	s . What is the spe	ed of	sound in air?		
		A.	373 m/s	B.	313 m/s	C.	33 3 m/s	D.	353 m/s		
	11)	The av	verage diastolic 120	pressure B.	e in a normal hun 75 – 80	nan boo	iy is: 85 — 90	D.	110		
	12)	The ef A.	ficiency of a peti 0.25 – 0.3	rol engir B.	ne is: 0.3 – 0.35	C.	0.35 - 0.4	D.	0.4 - 0.45		
	13)	43.75 i A.	is round off to 3 43.00	significa B.	ant figures as: 43.8	C.	43.90	D.	43.850		
	14)	What i	s unit vector in t	he direc	tion of vector A =	=4i+3j	•				
		Α.	$\frac{4i}{5} - \frac{3j}{5}$	B.	$\frac{4i+3j}{5}$	C.	$\frac{4i-3j}{5}$	D.	$\frac{3}{4}i + \frac{4}{5}j$		
	15)	How m	nany nanosecon 3.156×10 ⁻¹⁶ ns		here in one year? 3.1536×10 ⁷ ns		3.1536×10 ¹⁶ ns	D.	$3.1 \times 10^{-8} ns$		
	16)				plant takes stean ax possible efficie 60%		ooller at 427° <i>C</i> an	nd exha	austs into a low temp		
	17)				of viscosity η ar			· •			
		A .	$ML^{-1}T^2$	B.	MLT ⁻¹	C.	$ML^{-1}T^{-1}$	D.	$ML^{-1}T^{-2}$		
	For Ex	aminer	's use only:			Total	Marke:		17		

Marks Obtained:

- 1HS 1708 ---

PHYSICS HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B, C and D: 68

NOTE: The Questions of sections B, C and D are to be answered on the separately provided answer book.

Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly.

SECTION - B (Marks 21)

(Chapters 1 to 6)

Q. 2 Answer any SEVEN parts. All parts carry equal marks.

 $(7 \times 3 = 21)$

- (i) Find the value of $2|\overrightarrow{A} \times \overrightarrow{B}|^2 + 2(\overrightarrow{A}.\overrightarrow{B})^2$ where \overrightarrow{A} and \overrightarrow{B} are unit vectors.
- (ii) Draw Velocity time graphs when:
 - a. Acceleration is zero
 - b. Acceleration is constant (non-zero)
 - c. Acceleration is constant (non-zero) and negative
- (iii) Find the angle of projection of a projectile for which its maximum height is double of its horizontal range.
- (iv) A 1000 kg body at the top of an incline 10m high and 100 m long is released and rolls down the hill. What is its speed at the bottom of the hill if average retarding force due to friction is 735 N ($g = 9.8 \text{ m/s}^2$).
- (v) Calculate the moment of Inertia of a body having mass of 10 kg and radius 5m for the following conditions:
 - a. The body is a hoop.
 - b. The body is a solid disc.
 - c. The body is a sphere.
- (vi) Prove that earth's gravitational field is a conservative field.
- (vii) Write down the characteristics of an ideal fluid. Also differentiate between turbulent and laminar flow.
- (viii) a. Briefly describe why fog droplets appear to be suspended in air.
 - b. A person is standing near the fast moving train. Is he in danger of falling towards it? Briefly explain.
- (ix) What is the least speed at which an aeroplane can execute a vertical loop of 1 km radius, so that there will be no tendency for the pilot to fall down at the highest point?
- (x) Check the correctness of the relation $\sqrt{m.v} = \sqrt{F \times l}$ where 'v' is the speed of transverse wave on a stretched string of tension 'F', length 'l' and mass 'm'

SECTION - C (Marks 21)

(Chapters 7 to 11)

Q. 3 Answer any SEVEN parts. All parts carry equal marks.

 $(7 \times 3 = 21)$

- (i) Prove that for a simple pendulum $T = 2\pi \sqrt{\frac{l}{g}}$
- (ii) Under what conditions does the addition of two SHMs produce a resultant which is also SHM.
- (iii) Two tuning forks exhibit a beat frequency of 10 Hz. The frequency of one tuning fork is 256 Hz. Its frequency is then lowered slightly by adding a bit of wax to one of its prongs. The two forks then exhibit a beat frequency of 12 Hz. Determine the frequency of the second tuning fork.

- (iv) What is the effect of temperature on the speed of sound in air?
- (v) Write a note on Huygen's Principle.
- (vi) Sodium Light ($\lambda = 589nm$) is incident normally on a grating having 3000 lines / cm. What is the highest order of the spectrum obtained with this grating?
- (vii) Write a short note on different types of 'Optical Fibres'.
- (viii) An Astronomical telescope having magnifying power of 5 consists of two lenses 24 cm apart. Find the focal length of the lenses.
- (ix) Differentiate between Adiabetic and isothermic process. Draw diagram showing both processes.
- (x) Derive $C_P C_v = R$

Q. 6

SECTION - D (Marks 26)

Note: Attempt any TWO questions. All questions carry equal marks.

 $(13 \times 2 = 26)$

Q.4 a. Find the total work done as an object moves from x = 0 to x = 10.

Write a note on 'Young's Double Slit Experiment'.

(03)

(02)

(07)

- b. Derive Bernoulli's equation'. (06)
- A reversible engine works between the temperature whose difference is 100°. If it absorbs 746 J of heat from the source and rejects 546 J to the sink. Calculate the temperature of the source and sink.
- Q. 5 a. Write a detailed note on Doppler's Effect. (07)
 - b. Find expressions for the time of flight and height of the projectile for a projectile motion. (04)
 - c. The magnitude for dot and cross products of two vectors are 2 and $4-2\sqrt{3}$ respectively.
 - Find the angle between the two vectors.
- - b. Write a note on energy conservation in SHM. (04)
 - A 1000 kg car travelling with a speed of 144 km/hr rounds a curve of radius 100m. Find the
 necessary Centripetal Force.

---- 1HS 1708 ----

Page 2 of 2 (Physics)